THESIS TOPIC

Subject No. (to be completed by the ED):

FUNDING:
[] Requested
[] Acquired

Funding origin:

Thesis title:
How pathological protein aggregates interact with mitochondria in the degenerating neurons of patients affected with Amyotrophic Lateral Sclerosis

Unit / team:
MR CNRS 6015 INSERM U1083 - MITOVASC Physiopathologie cardioVAScuaire et MITOchondriale, équipe Mitolab

Supervisor’s name:
Dr. Arnaud CHEVROLLIER, HDR
Dr. Philippe CODRON MD, PhD

Socio-economic and scientific context:
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder affecting upper and lower motor neurons in the cortex, brainstem and spinal cord. The disease is responsible for a progressive paralysis leading to death within 2–3 years after the symptoms onset, usually from respiratory failure (Kiernan, 2011 ; Chio, 2013). To date, the only treatment available for ALS is the Riluzole, with a modest efficacy on the progression of the disease. Indeed, most of the clinical trials conducted for the last two decades remained negative, partly due to the lack of knowledge about the pathophysiology of the disease (Mitsumoto, 2014). In recent years, major advances have been made in understanding neurodegeneration in ALS, through the identification of constant post-mortem lesions in degenerating motor neurons, in particular intracytoplasmic inclusions of the protein TDP-43 and mitochondria structural and functional alterations (Neumann, 2006 ; Wang, 2016).

Working hypothesis and aims:
Our research team conducts for more than 15 years projects focusing on mitochondrial alterations in neurodegenerative disorders, using genomics (Bonnefoi D, 2014 ; Gerber S, 2017 ; Goudenège, 2018), biochemistry (Chevrollier, 2008 ; Guillot, 2010), metabolomics (Cho Anh, 2016 ; Bocca et al., 2018) and histological approaches (Chevrollier, 2012 ; Codron, 2018). The study and analysis of mitochondria and related proteins in post-mortem brain samples (Codron et al. in review Nat Comm). This approach allowed us to characterize with unprecedented detail the architecture of intracellular structures in the human brain, opening further gates to a more comprehensive understanding of the disease responsible for common neurological diseases.

The main objective of our project is to use this innovative technique to characterize with a nanometer-scale precision the intraneuronal lesions observed in ALS, focusing on TDP-43 inclusions and mitochondrial alterations, with the aim of better understanding the pathophysiology and propagation of the disease. With a translational approach, we will attempt to define clinical-pathological correlations and identify endophenotypes among patients, with distinct pathophysiological mechanisms, to contribute to current works on diagnostic and prognostic markers and personalized medicine. Finally, we will focus on similarities and differences between the lesions observed in post-mortem samples and those induced in commonly used cell lines and animal models in the field of ALS research, to identify their strength and limitations.

Main milestones of the thesis (approximately 12 actions):

First Part of the Thesis: using STORM imaging, we will characterize at the nanoscale level the pathological lesions observed in the upper and lower motor neurons of patients affected with ALS, focusing on TDP-43 inclusions and mitochondrial alterations. We will attempt to identify endophenotypes among patients and make assumptions about common and distinct pathophysiological mechanisms in the disease.

Second Part of the Thesis: a similar approach will be used to characterize the lesions induced in commonly used cell lines and animal models in the field of ALS research. We will study protein inclusions and mitochondrial alterations in neuronal cell lines stressed by toxic exposure or expressing mutated TDP-43. Thanks to the partnership established two years ago with the Canadian research unit CERVO (Dr Jean-Pierre JULIEN) specialized in the generation of ALS research models, we will also analyze the pathological lesions developed by common (TDP-43A315T, TDP-43G348C) and innovative (TDP-43UBQLN2, intracerebral injection of TDP-43 aggregates) mice models. Finally, we will study the similarities and differences between these lesions and those observed in post-mortem brain an spinal cord samples of patients affected with ALS to define their strength and limitations.

Third part of the Thesis: scientific articles writing, oral communication, and thesis defense.

Scientific and technical skills required by the candidate:
Expertise in Clinical Neuroscience, Histopathology, Cell Imaging (samples preparation, acquisition and image processing), Biostatistics, and scientific writing (English and French).

3 publications from the team related to the topic (last 5 years):

National and international collaborations:
- Dr Franck LETOURNEL : Laboratoire de Neurobiologie et Neuropathologie CHU d'Angers, Angers, France.
- Pr Jean-Pierre JULIEN : CERVO Brain Research Centre, 2601 Chemin de la Canardière, Québec, QC, Canada.
- Dr Mathilde DUCHESNE : Laboratoire d'Anatomie Pathologique, Centre Hospitalier Universitaire de Limoges, Limoges, France.

Références

