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Context

Distributed systems are composed of a set of independant entities, be it decentralized networks of
independant computing machines, multi-threads applications executed within a single multi-core
machine, supercomputers composed of clusters of GPUs, or even complex human societies. They
have recently been increaslingly present in our lives: In 2023, the world is now exceeding 5.3 billion
Internet users, the simplest cellphone processor today is multi-core, cloud computing is now a well-
established technology used by countless companies thanks to the explosion of services it offers,
geo-replication is largely used to guarantee the persistence of sensitive data, etc.

Despite all the possible applications for distributed systems, distributed applications are notori-
ously difficult to program, on the one hand because each distributed system has its own specificities
which make the algorithms dependent on the system considered, and on the other hand because it is
currently very hard to dissociate the functional aspects specific to the application under development
from those relating to distributed systems-specific synchronization issues.

Shared data structures are central to distributed applications as they encapsulate shared data
and abstract synchronization mechanisms built upon communication primitives available to pro-
cesses, such as shared memory or communication channels. Suppose, for example, that one needs
to implement a new e-commerce service. A central data structure of the project would be a set of
sellable objects, in which objects can be inserted when they are put up for sale, and deleted after
they have been sold. From an functionnal perspective, the data structure implementation needs to
focus on making the use of such data structure user-friendly, for example by providing a nice query
interface, allowing to easily filter out elements based on user’s previous purchases, or to optimize
prices using some state-of-the-art machine learning.

However, in practice, a large portion of the code of the data structure will have to focus on
low-level synchronization mechanisms required to make it safe to use in a distributed environment.

For example, when an item is sold at one data center, it needs to become invisible immediately
at other data centers despite asynchrony and crashes, so a specific synchronization algorithm must
be implemented to maintain consistency (this is similar to implemented a boolean atomic register
to encode whether a specific object is available or not) that requires sending messages and waiting
for acknowledgements, possibly twice [2]. Differently, evaluating a read query on a consistent state
of the set would require an additional non-intuitive snapshot algorithms based on double collect
strategies and complex helping mechanisms [1]... This methodology often results in very complicated
algorithms that can only be designed by experts on several fields of distributed computing, and that
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are very hard to maintain when the needs of the application evolve. Even worst, the synchronization
mechanisms described above only work if the strong assumptions made in [2] are relevant in the
system on which the e-commerce shop is built. Otherwise, for example if more types of failures are
prone to happen, if the processes are unable to communicate directly with each other (e.g. in peer-
to-peer systems), or if the scale of the system makes waiting for quorums impractical, completely
different algorithms must be designed to solve the same problem.

Broadcast abstractions

When processes communicate by sending and receiving messages, replication is used to avoid a loss
of information when crashes occur. A major difficulty resulting from replication is to maintain
consistent data across all replicas when updates are performed concurrently. Reliable broadcast
ensures all non-faulty processes receive exactly the same set of messages. It can be used to make
sure all replicas will be noticed when a process performs an operation. However, reliable broadcast
does not provide any form of ordering guaranties on the messages, so additional synchronization is
required to maintain a consistent state across all replicas.

Reliable broadcast can be enriched by restricting the possible orders of message reception. For
example, causal broadcast ensures that, if a process p first receives a message m and then broad-
casts a message m′, then no process receives m′ before m. Causal broadcast can be used to solve
some consistency issues [13], but not all. Another example is total-order broadcast, that ensures
all replicas will receive all messages in the same order. Total-order broadcast allows to solve all
the synchronization issues stated above, but at a much higher cost than causal consistency. The
implementation of both reliable broadcast, causal broadcast and atomic broadcast has been widely
studied in different systems [3, 4, 8, 12].

Total-order broadcast and causal broadcast are are not equivalent, because implementing total-
order broadcast on top of causal broadcast requires strong assumptions on failure patterns and
message routing delays, that may, or may not, be realistic depending on the specificities of the
considered system. Similarly, total-order broadcast may be more costly than what is required for
the e-commerce service described above (or any other shared system), or may provide guarantees
that are only required infrequently.

We recently discovered several abstractions intermediate between reliable broadcast and atomic
broadcast, but equivalent to various central problems of distributed algorithms, which allow very
simple, elegant and efficient implementations of a variety of shared data structures. For example,
mutual-broadcast [6] captures reading and writing in a shared variable, SCD-broadcast [9] is equiv-
alent to the snapshot object defined above, and pair-broadcast [6] is exactly the abstraction requires
to make sure that one, and only one, customer can buy the last item from the stock, when more
that one try to do so concurrently.

This convinced us that broadcast primitives are “the right abstractions” to build a “standard
model” of synchronization problems, that could tackle both challenges of allowing simple imple-
mentations of shared data structures that non-expert engineers can use to build efficient complex
systems, as well as providing the fundational background to unify specific distributed systems. In
other words, broadcast primitives can serve as building blocks that allow processes to synchronize
their local copies of shared data (replicas), while providing a spark of homogeneity between systems.
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Objectives

The recrutee will be required to perform advanced research, with the intention to publish about the
following question: Which distributed problems can be abstracted with broadcast abstractions, and
how? This general problem can be divided into many simpler ones, such as:

• Given a specific synchronization problem, (e.g. consensus between k processes or k-set agree-
ment), is there a broadcast abstraction that captures it?

• Are there synchronization problems whose complexity cannot be captured exactly by a broad-
cast abstraction? How to prove it?

• How does the hierarchy of broadcast abstractions compare to other hierarchies of distributed
computing, such as the minimal failure detector of consensus number?

• How to implement the newly-found abstractions efficiently in various distributed computing
models?

After a phase of familiarization with the topic and the problems it raises, the recruitee will have to
choose open questions and try to answer them, either by proposing an algorithm or by demonstrating
a theorem of impossibility. This position requires advanced abstract reasoning skills, and advanced
skills in distributed computing, especially regarding the theory of distributed computability.

It will take place in the Laboratoire des Sciences du Numérique de Nantes (LS2N) of the Uni-
versity of Nantes. The GDD (Gestion des Données Distribuées – Distributed Data Management)
team is internationally recognized in the fields of distributed and parallel computing, the Web and
databases.

Do not hesitate to contact us for more information!
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